
SIAM J. OPTIM. c\bigcirc 2019 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 318--342

AN ASYNCHRONOUS BUNDLE-TRUST-REGION METHOD FOR
DUAL DECOMPOSITION OF STOCHASTIC MIXED-INTEGER

PROGRAMMING\ast 

KIBAEK KIM\dagger , COSMIN G. PETRA\ddagger , AND VICTOR M. ZAVALA\S 

Abstract. We present an asynchronous bundle-trust-region algorithm within the context of
Lagrangian dual decomposition for stochastic mixed-integer programs. The approach solves the La-
grangian master problem by using a bundle method with a trust-region constraint. This scheme en-
ables asynchronous computations and can thus help mitigate severe load imbalance issues (associated
with the solution of scenario subproblems) and improve parallel efficiency. We provide a convergence
analysis and an implementation of the proposed scheme. We also present extensive numerical results
on eighty instances of a large-scale stochastic unit commitment problem, and demonstrate that the
proposed approach provides significant reductions in solution time and achieves strong scaling.

Key words. stochastic integer programming, bundle methods, asynchronous, parallel comput-
ing

AMS subject classifications. 49M27, 65K05, 68W10, 90C10, 90C15

DOI. 10.1137/17M1148189

1. Introduction. We consider the Lagrangian dual decomposition (DD) of two-
stage stochastic mixed-integer programs (SMIPs) of the form

min
xj ,yj

N\sum 
j=1

pj
\bigl( 
cTxj + qTj yj

\bigr) 
(1a)

s.t.

N\sum 
j=1

Hjxj = 0,(1b)

(xj , yj) \in Gj , j \in J.(1c)

Here, xj \in \BbbR n1 and yj \in \BbbR n2 are decision variables associated to scenario j \in J :=
\{ 1, . . . , N\} . The matrices Hj are such that (1b) represent the nonanticipativity con-
straints x1 = x2 = \cdot \cdot \cdot = xN . We define the feasible sets

Gj := \{ (x, y) : Ax \geq b, Tjx+Wjy \geq hj , x \in X, y \in Y \} , j \in J,

and assume that these sets are bounded and nonempty. We also define mixed-integer
sets for xj and yj of the form X := \BbbR n1 - p1\times \BbbZ p1 and Y := \BbbR n2 - p2\times \BbbZ p2 , respectively.

\ast Received by the editors September 25, 2017; accepted for publication (in revised form) October
8, 2018; published electronically January 24, 2019. The U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the published form of this contribution, or allow others
to do so, for U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by
these rights.

http://www.siam.org/journals/siopt/29-1/M114818.html
Funding: This material is based upon work supported by the U.S. Department of Energy, Office

of Science, under contract DE-AC02-06CH11357. The work of the second author was performed
under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344. The work of the third author was supported by the U.S.
Department of Energy under grant DE-SC0014114.

\dagger Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439
(kimk@anl.gov).

\ddagger Lawrence Livermore National Laboratory, Livermore, CA 94550 (petra1@llnl.gov).
\S Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison,

WI 53706 (victor.zavala@wisc.edu).

318

http://www.siam.org/journals/siopt/29-1/M114818.html
mailto:kimk@anl.gov
mailto:petra1@llnl.gov
mailto:victor.zavala@wisc.edu


ASYNCHRONOUS DUAL DECOMPOSITION 319

The DD of (1) is obtained by applying a Lagrangian relaxation of the nonantici-
pativity constraints (1b). The Lagrangian dual function is given by

D(\lambda ) := min
xj ,yj

\left\{   
N\sum 
j=1

Lj(xj , yj , \lambda ) : (xj , yj) \in Gj , j \in J

\right\}   ,(2)

where Lj(xj , yj , \lambda ) := pj
\bigl( 
cTxj + qTj yj

\bigr) 
+ \lambda THjxj and \lambda are the dual variables of

the nonanticipativity constraints. The evaluation D(\lambda ) involves the solution of | J | 
decoupled scenario subproblems. Consequently, the Lagrangian dual problem can be
written as

zLD := max
\lambda 

N\sum 
j=1

Dj(\lambda ),(3)

where

Dj(\lambda ) := min
xj ,yj

\{ Lj(xj , yj , \lambda ) : (xj , yj) \in Gj\} .(4)

We use \lambda \ast to denote an optimal dual variable (i.e., satisfying D(\lambda \ast ) = zLD).
We recall that the function Dj(\lambda ) is a piecewise concave function of \lambda . Moreover,

Dj(\cdot ) is composed of a finite number of segments, which is no more than the number
of extreme points of conv(Gj) (the convex hull of Gj).

DD methods for SMIP problems have been widely studied in the literature (e.g.,
[5, 1, 14]). These methods offer the ability to address integer recourse variables (i.e.,
integer variables in the second stage and beyond) and the opportunity to evaluate the
dual function by solving parallel subproblems. Because each scenario subproblem of
the decomposition method is a mixed-integer program, however, parallel computations
may suffer from significant load imbalance and decreased parallel efficiency.

A few studies reported in the literature have applied asynchronous schemes for
DD. Ryan, Rajan, and Ahmed [23] extended a (synchronous) scenario decomposition
method proposed in [1] to conduct asynchronous computation of scenario subprob-
lems. This method eliminates discrete feasible solutions sequentially instead of finding
the best dual variable. Aravena and Papavasiliou [2] use an incremental subgradient
search that updates dual variables based only on a subset of the scenario subprob-
lem functions. A limitation of this approach is that subgradient methods rely on
an appropriate choice of the step size, which is not straightforward to determine in
practice.

Incremental methods that enable asynchronous computations have been widely
studied in the context of large-scale convex optimization. The proposed methods
are based mainly on subgradient-based search strategies [19, 15]. An asynchronous
subgradient variant was proposed and analyzed in [20]. Bertsekas further extended
the incremental subgradient method to a proximal variant [3] and an augmented
Lagrangian variant [4]. Gaudioso, Giallombardo, and Miglionico [10] studied the case
of minimizing a function defined as the pointwise maximum over a number of convex
functions, where only a subset of component functions are evaluated. As pointed
out in [7], the method in [10] cannot be applied to sums of functions (as needed in
the context of DD). Emiel and Sagastiz\'abal [7] consider the case of minimizing the
sum of convex functions with the focus on inexact function evaluations [16]. In a
recent work [24], an incremental bundle method was proposed to use lower and upper



320 K. KIM, C. G. PETRA, AND V. M. ZAVALA

models for updating the stability center. This work also considers inexact function
evaluations for the bundle model. Numerical performance for the schemes proposed
in [10, 7, 24] was limited. Furthermore, none of these works address issues associated
with parallel implementation and performance issues (such as load imbalancing).

An asynchronous implementation of a proximal bundle method is provided in [8],
where bundle solutions are implicitly regularized in the objective function. Fischer and
Helmberg [8] present a proximal bundle framework that can asynchronously choose
and solve the subspace of a general convex function. Unfortunately, this framework
suffers from important scalability limitations. In particular, the method stores and
frequently accesses global data which must be distributed for large-scale problems. At
every iteration, a significant amount of communication overhead would occur. As a
result, computational performance and efficiency of this method remain unanswered
[8].

Trust-region constraints provide an explicit regularization mechanism to develop
bundle methods, as compared with the implicit regularization provided by proximal
bundle methods. Linderoth and Wright [17] applied a parallel bundle-trust-region
(BTR) method and its asynchronous variant to the L-shaped method (also known as
Benders decomposition) for small- and medium-sized stochastic linear programming
problems [17]. A generalization of bundle methods with a unified form of penalty-like
and trust-region-like stabilizing terms has been considered and analyzed in [9]. In
this work, we further develop these ideas to develop an incremental bundle method
in the context of Lagrangian dual decomposition for solving large-scale SMIP prob-
lems. We prove that our incremental bundle method is convergent for any work-
allocation policy (static against dynamic in subsection 3.3), any trial-point selection
policy (first-in-first-out against last-in-first-out in subsection 3.1), any trust region
norm (including 2-norm and \infty -norms), and any bundle management step. We also
perform extensive numerical experiments to demonstrate that the asynchronous im-
plementation achieves significant improvements in parallel efficiency and solution time
over a standard synchronous implementation.

The remainder of this paper is organized as follows. In section 2 we present
the BTR method for Lagrangian DD and associated convergence analysis. Section 3
presents an asynchronous variant of the method and associated convergence analysis.
In section 4 we present the implementation of the methods in the open-source software
package DSP [14] and numerical experiments. In section 5, we summarize the paper
and discuss possible directions for future research.

2. A bundle-trust-region algorithm. We propose a BTR algorithm to solve
the Lagrangian dual problem (3). The proposed BTR method iteratively approxi-
mates the Lagrangian dual function D(\lambda ) by adding a set of cutting planes (cuts).
We let k \in \BbbZ + and l \in \BbbZ + be the indices for major and minor iterations, respectively.
Every major iteration updates the best lower bound, whereas every minor iterate
updates the approximation of the Lagrangian dual function. We define the model
function:

mk,l(\lambda ) := max
\sum 
j\in J

\theta j(5a)

s.t. \theta j \leq Dj(\lambda 
i) + (Hjx

i
j)

T (\lambda  - \lambda i), i \in \scrB k,l, j \in J.(5b)

We recall that Hjx
i
j \in \partial Dj(\lambda 

i) for j \in J and \scrB k,l is a set of cut indices at iteration
(k, l). We also recall that the model function mk,l(\cdot ) outer-approximates D(\cdot ) (i.e.,
mk,l(\lambda ) \geq D(\lambda ) for all \lambda \in \BbbR Nn1 and (k, l)).



ASYNCHRONOUS DUAL DECOMPOSITION 321

At iteration (k, l), the master problem is given by

max
\lambda \in \BbbR Nn1

mk,l(\lambda )(6a)

s.t. \| \lambda  - \lambda k\| \leq \Delta k,l,(6b)

where \lambda k is the trust region (TR) center and \Delta k,l > 0 is the TR size. The master
problem (6) finds a new trial point \lambda k,l to evaluate D(\cdot ). We define the predicted
increase of D(\cdot ) as

vk,l := mk,l(\lambda 
k,l) - D(\lambda k).(7)

The TR center is updated as \lambda k+1 \leftarrow \lambda k,l if the sufficient decrease condition

D(\lambda k,l) \geq D(\lambda k) + \xi vk,l(8)

is satisfied, where \xi \in (0, 1/2). We call this type of iteration a serious step. In this
case, the master problem (6) is resolved with the updated TR center. Otherwise, a
new set of cuts (5b) is added to improve the model mk,l(\lambda ). We call this type of
iteration a null step. The method terminates whenever

vk,l \leq \epsilon \cdot (1 + | D(\lambda k)| )(9)

holds for some \epsilon \in \BbbR +.
The TR size \Delta k,l needs to be carefully updated to accelerate performance. For

example, if the TR size is too large, a number of null steps must be taken before each
serious step is taken. On the other hand, if the TR size is too small, the algorithm
takes serious steps at almost all iterations with only marginal improvements in the
lower bound. We thus devise tests for detecting whether the TR size is too large or
too small. To do so, we define the model approximation error at iterate (k, l) as

\delta k,l :=
\sum 
j\in J

\delta k,lj ,(10)

where

\delta k,lj := Dj(\lambda 
k,l) + (Hjx

k,l
j )T (\lambda k  - \lambda k,l) - Dj(\lambda 

k).(11)

By construction, \delta k,lj \geq 0 holds. We define the maximum model variation as

Vk := max
\lambda 

\bigl\{ 
D(\lambda ) : \| \lambda  - \lambda k\| \leq 1

\bigr\} 
 - D(\lambda k).(12)

We deem the TR size to be too large if either D(\lambda k) - D(\lambda k,l) or the approximation
error \delta k,l are much larger than Vk. By construction, we have that

Vk \leq max
\lambda 

\bigl\{ 
mk,l(\lambda ) : \| \lambda  - \lambda k\| \leq 1

\bigr\} 
 - D(\lambda k)(13)

\leq vk,l
min \{ 1, \| \lambda k,l  - \lambda k\| \} 

.(14)

Consequently, it is sufficient to test whether

max
\bigl\{ 
D(\lambda k) - D(\lambda k,l), \delta k,l

\bigr\} 
>

vk,l
min\{ 1, \| \lambda k,l  - \lambda k\| \} 

(15)



322 K. KIM, C. G. PETRA, AND V. M. ZAVALA

holds in order to determine whether the TR size is too large. We now let

\rho := min\{ 1, \| \lambda k,l  - \lambda k\| \} 
max

\bigl\{ 
D(\lambda k) - D(\lambda k,l), \delta k,l

\bigr\} 
vk,l

,(16)

and let \tau k count the iterations in which the TR size is not reduced. We then update
the TR size as follows:

1. If \rho > 0, then \tau k+1 := \tau k + 1.
2. If \rho > \=\rho or (\rho \in (0, \=\rho ) and \tau \geq \=\rho ), then set \tau k+1 := 0, and

\Delta k,l+1 \leftarrow max

\biggl\{ 
\Delta k,l

min\{ \rho , \rho \} 
,\Delta 

\biggr\} 
.(17)

We deem the TR to be too small if a larger (i.e., better) Lagrangian function value is
found, and if the solution is bounded by the TR constraint. That is, whenever

D(\lambda k+1) \geq D(\lambda k) +
1

2
vk,l and \| \lambda  - \lambda k\| \leq \Delta k,l(18)

hold, we increase the TR size as

\Delta k,l+1 \leftarrow min\{ 2\Delta k,l, \=\Delta \} .(19)

Algorithm 1 BTR method.

1: Initialize \lambda 0 \in \BbbR Nn1 ,\Delta 0,0 \in [\Delta , \=\Delta ], \xi \in (0, 1/2), \epsilon \geq 0,\scrB 0,0 \leftarrow \{ 0\} , k \leftarrow 0, and
l\leftarrow 0.

2: Solve the Lagrangian subproblem (4) to find Dj(\lambda 
0) and x0

j for all j \in J .
3: Initialize the model function m0,0.
4: loop
5: Solve the master (6) to \lambda k,l.

6: Solve the Lagrangian subproblem (4) to find Dj(\lambda 
k,l) and xk,l

j for all j \in J .

7: if mk,l(\lambda 
k,l) - D(\lambda k) \leq \epsilon (1 + | D(\lambda k)| ) then  \triangleleft Termination test

8: Stop
9: end if

10: if D(\lambda k,l) \geq D(\lambda k) + \xi [mk,l(\lambda 
k,l) - D(\lambda k)] then  \triangleleft Serious step

11: \lambda k+1 \leftarrow \lambda k,l.
12: Choose \Delta k+1,0 \in [\Delta k,l, \=\Delta ].
13: mk+1,0 \leftarrow mk,l.
14: k \leftarrow k + 1 and l\leftarrow 0.
15: else  \triangleleft Null step
16: Choose \Delta k,l+1 \in [\Delta ,\Delta k,l].
17: Update mk,l+1 by adding cuts (5b).
18: l\leftarrow l + 1.
19: end if
20: end loop

2.1. Algorithmic steps. We now summarize the steps of Algorithm 1. The
BTR algorithm is initialized using the dual \lambda 0 and parameters \Delta k,l, \xi , and \epsilon (line
1 of Algorithm 1). For a given \lambda 0, the Lagrangian dual function is evaluated by
solving the subproblem (4) for each scenario j \in J (line 2 of Algorithm 1). The model



ASYNCHRONOUS DUAL DECOMPOSITION 323

function m0,0 is initialized by adding cuts (5b) generated at x0
j (line 3 of Algorithm

1). The algorithm continues by finding a new dual value \lambda k,l (line 5 of Algorithm 1),
solving the Lagrangian subproblems (line 6 of Algorithm 1), updating the TR (lines
11, 12, and 16 of Algorithm 1), and updating the master problem (lines 13 and 17 of
Algorithm 1) until the termination criterion is met (line 8 of Algorithm 1).

The BTR algorithm solves the Lagrangian dual problem and thus only provides
a lower bound for the original SMIP (1). An upper bound for SMIP (1) can be
obtained by evaluating first-stage variable solutions xk

j obtained for each Lagrangian

subproblem Dj(\lambda 
k) at iteration k. We note that at most | J | first-stage solutions can

be obtained in each iteration. The evaluation of first-stage solution xk solves the
second-stage recourse function \scrQ (xk) :=

\sum N
j=1 pjQj(x

k), where

Qj(x) := min
y\in Y

\bigl\{ 
qTj y : Wjy \geq hj  - Tjx

\bigr\} 
.(20)

We assume that Qj(x) = \infty if there does not exist recourse y \in Y such that Wjy \geq 
hj  - Tjx (i.e., the candidate x is infeasible). We recall that obtaining an optimal
upper bound requires an exhaustive branch-and-bound scheme [5, 12].

2.2. Convergence analysis. We now present a convergence analysis for Algo-
rithm 1. We assume that \epsilon = 0 throughout this section. We first show that only a
finite number of cuts (5b) are available to construct the model function mk,l(\cdot ).

Lemma 2.1. Algorithm 1 can generate only a finite number of cuts (5b).

Proof. The subgradients (Hjx
k
j ) at major iteration k are obtained at the vertices

(xj , yj) of the polyhedra conv(Gj), j \in J . Such vertices are finitely many in conv(Gj)
for all j \in J .

We now show that the algorithm does not perform an infinite number of null
steps.

Lemma 2.2. Suppose that Algorithm 1 takes a null step at iteration (k, 0). There
exists a finite l > 0 such that the algorithm either takes a serious step or terminates
at iteration l.

Proof. To establish a contradiction, suppose that the algorithm takes infinitely
many null steps at major iteration k. Then, we have for l \geq 0,

mk,l(\lambda 
k,l) - D(\lambda k) > \epsilon (1 + | D(\lambda k)| ) = 0(21)

and

D(\lambda k,l) < D(\lambda k) + \xi 
\bigl[ 
mk,l(\lambda 

k,l) - D(\lambda k)
\bigr] 
.(22)

Let \theta k,lj be the solution of the model mk,l(\lambda 
k,l). There exists some j \in J such that

linear inequalities generated at iteration (k, l),

\theta j \leq Dj(\lambda 
k,l) + (Hjx

k,l
j )T (\lambda  - \lambda k,l),(23)

are violated at (\theta k,l, \lambda k,l); otherwise,\sum 
j\in J

\theta k,lj  - D(\lambda k,l) = mk,l(\lambda 
k,l) - D(\lambda k,l)

> mk,l(\lambda 
k,l) - D(\lambda k) - \xi [mk,l(\lambda 

k,l) - D(\lambda k)]



324 K. KIM, C. G. PETRA, AND V. M. ZAVALA

> 0.

Here, the first and second inequalities hold due to (22) and (21), respectively. By
Lemma 2.1, we have that either (21) or (22) will be violated after a finite number of
null steps, contradicting the assumption.

We adapt an approach that obtains the lower bound of the predicted increase, as
shown in [17].

Lemma 2.3. For k \geq 0 and l \geq 0, we have that

mk,l(\lambda 
k,l) - mk,l(\lambda 

k) \geq min

\biggl\{ 
\Delta k,l

\| \lambda \ast  - \lambda k\| 
, 1

\biggr\} \bigl[ 
D(\lambda \ast ) - D(\lambda k)

\bigr] 
.(24)

Proof. We need only show that (24) holds for the\infty -norm because \| \cdot \| \infty \leq \| \cdot \| p \leq 
\| \cdot \| r for p > r > 0. Suppose that we obtain an optimal step size \alpha k,l of the form

\alpha k,l := arg max
\alpha \in [0,1]

\bigl\{ 
mk,l(\lambda 

k + \alpha [\lambda \ast  - \lambda k]) : \| \alpha [\lambda \ast  - \lambda k]\| \leq \Delta k,l

\bigr\} 
.

We have

mk,l(\lambda 
k,l) \geq mk,l(\lambda 

k + \alpha k,l[\lambda 
\ast  - \lambda k])

\geq D(\lambda k + \alpha k,l[\lambda 
\ast  - \lambda k])

\geq D(\lambda k) + \alpha k,l[D(\lambda \ast ) - D(\lambda k)],

where the first inequality holds because \lambda k,l is the maximizer of mk,l, the second
inequality holds becausemk,l is an outer approximation ofD(\cdot ), and the last inequality
holds because of concavity of D(\cdot ). Since mk,l(\lambda 

k) = D(\lambda k), we have that

mk,l(\lambda 
k,l) - mk,l(\lambda 

k) \geq mk,l(\lambda 
k,l) - D(\lambda k) \geq \alpha k,l[D(\lambda \ast ) - D(\lambda k)].(25)

Moreover, since \| \alpha [\lambda \ast  - \lambda k]\| \leq \Delta k,l, the optimal step size is given by

\alpha k,l = min

\biggl\{ 
\Delta k,l

\| \lambda \ast  - \lambda k\| 
, 1

\biggr\} 
.(26)

Therefore, (24) is obtained from (25) and (26).

We now show that Algorithm 1 finds an optimal Lagrangian dual bound.

Theorem 2.4. Algorithm 1 delivers a dual iterate sequence \{ \lambda k\} satisfying limk\rightarrow \infty 
D(\lambda k)\rightarrow D(\lambda \ast ).

Proof. Let lk be the iteration index in which \lambda k,lk takes a serious step and thus
\lambda k+1 = \lambda k,lk . Since

mk,lk(\lambda 
k,lk) - D(\lambda k) \geq \epsilon (1 + | D(\lambda k)| ) > 0(27)

and

D(\lambda k,lk) - D(\lambda k) \geq \xi [mk,lk(\lambda 
k,lk) - D(\lambda k)] > 0,(28)

we have that D(\lambda k+1) - D(\lambda k) > 0. Since \{ D(\lambda k)\} is an increasing sequence bounded
above by zLD, we have that

lim
k\rightarrow \infty 

D(\lambda k+1) - D(\lambda k) = 0.(29)



ASYNCHRONOUS DUAL DECOMPOSITION 325

Moreover, from Lemma 2.3 we have that

mk,lk(\lambda 
k,lk) - mk,lk(\lambda 

k) = D(\lambda k+1) - D(\lambda k)

\geq min

\biggl\{ 
\Delta k,lk

\| \lambda \ast  - \lambda k\| 
, 1

\biggr\} \bigl[ 
D(\lambda \ast ) - D(\lambda k)

\bigr] 
.

From (29) and \Delta k,l > 0, we have that limk\rightarrow \infty D(\lambda \ast ) - D(\lambda k) = 0.

Theorem 2.4 implies finite convergence to an \epsilon -optimum for \epsilon > 0. In other words,
there exists K \in \BbbZ + for any \epsilon > 0 such that D(\lambda \ast )  - D(\lambda k) < \epsilon for k \geq K. Also
note that Theorem 2.4 is valid for any \Delta > 0. The convergence analysis remains valid
independent of the choice of the TR norm, as shown in the proof of Lemma 2.3. The
convergence result is also independent of the bundle management strategy at serious
steps. For instance, Theorem 2.4 holds even if all the cuts are removed at every serious
step. However, a suitable bundle management strategy may improve the efficiency of
Algorithm 1.

3. An asynchronous variant. In this section we present an asynchronous im-
plementation variant of the BTR algorithm described in Algorithm 1. To achieve
asynchronicity, we only use a subset of scenario indices to update the master problem
and the TR. Let J i \subseteq J be the subset of scenario indices such that bundle information
i \in \scrB k,l is added to the model. We define the model function

\~mk,l(\lambda ) := max
\sum 
j\in J

\theta j(30a)

s.t. \theta j \leq Dj(\lambda 
i) + (Hjx

i
j)

T (\lambda  - \lambda i) \forall i \in \scrB k,l, j \in J i,(30b)

where the cuts (30b) are generated only for a subset of scenarios J i. Note that
\~mk,l(\lambda ) \geq D(\lambda ) and mk,l(\lambda ) \geq D(\lambda ) for any given \lambda \in \BbbR Nn1 and (k, l).

At iteration (k, l), the master problem of the asynchronous variant is given by

max
\lambda \in \BbbR Nn1

\bigl\{ 
\~mk,l(\lambda ) : \| \lambda  - \lambda k\| \leq \Delta k,l

\bigr\} 
.(31)

While the master problem (31) is a natural extension of (6), it is not straightforward
to guarantee convergence under this setting. In particular, existing algorithms assume
full scenario synchronization before updating the TR (i.e., by checking (8), (16), and
(18)), and terminating the algorithm (9). We now describe necessary modifications
to ensure convergence.

We consider a set of processes that consist of a master process and multiple worker
processes. The master process is responsible for solving the master problem (31) to
find a new trial point \lambda k,l for the Lagrangian dual function D(\cdot ). We let \Pi denote
the set of worker processes. Each worker process \pi \in \Pi is responsible for solving La-
grangian subproblems for a subset J\pi \subseteq J of scenarios to evaluate the trial point. We
let \Pi k,l \subseteq \Pi denote a subset of idle worker processes ready for subproblem solutions
at iteration (k, l). We define \Pi \in (0, | \Pi | ] as the minimum number of worker processes
that are ready for subproblem solutions. We let \Lambda k,l denote a queue for trial points \lambda q

and status sq, where q index iterations (k, l), the status of evaluation of trial point \lambda q

is encoded in sq\pi for \pi \in \Pi , and sq := (sq\pi \forall \pi \in \Pi ). Each queue element is initialized
by sq = ready, and sq\pi = assigned is encoded when \lambda q is under evaluation at process
\pi . Once \lambda q is evaluated at process \pi , the status is set to sq\pi = evaluated. We let \=\Lambda 
be the maximum number of elements in the queue \Lambda k,l at any iteration (k, l).



326 K. KIM, C. G. PETRA, AND V. M. ZAVALA

We denote the predicted increase at iteration (k, l) by

\~vk,l := \~mk,l(\lambda 
k,l) - D(\lambda k).(32)

The serious steps and null steps are taken only when a trial point is evaluated by
all worker processes. Otherwise, we update the model function \~mk,l+1(\cdot ) by adding
cuts (30b). In particular, if there exists

\^\lambda k,l \in argmax\{ D(\lambda ) : (\lambda , s) \in \Lambda k,l, s\pi = evaluated \forall \pi \in \Pi \} (33)

and

D(\^\lambda k,l) \geq D(\lambda k) + \xi \~vk,l,(34)

we update the TR center \lambda k+1 \leftarrow \^\lambda k,l. Otherwise, a null step is taken to update the
model function \~mk,l+1(\cdot ). We terminate the algorithm if

\~vk,l \leq \epsilon (1 + | D(\lambda k)| ).(35)

We devise tests for adjusting the TR size \Delta k,l while still retaining convergence. For
a small TR size, we can use the criterion (18) and update (19). In the asynchronous
variant, not all scenario information is available at most null steps. To handle this
case, we deem the TR to be too large if

\~\delta k,l :=
| J | 

\sum 
\pi \in \Pi k,l

\sum 
j\in J\pi 

\delta k,lj\sum 
\pi \in \Pi k,l

| J\pi | 
>

\~vk,l
min \{ 1, \| \lambda k,l  - \lambda k\| \} 

.(36)

We define

\~\rho := min
\bigl\{ 
1, \| \lambda k,l  - \lambda k\| 

\bigr\} \~\delta k,l

vk,l
(37)

and decrease the TR size as follows:
1. If \~\rho > 0, then \tau k+1 \leftarrow \tau k + 1.
2. If \~\rho > \rho or (\rho \in (0, \rho ) and \tau \geq \rho ), then set \tau k+1 \leftarrow 0, and

\Delta k,l+1 \leftarrow max

\biggl\{ 
\Delta k,l

min\{ \rho , \rho \} 
,\Delta min

\biggr\} 
.(38)

3.1. Algorithmic steps. The steps of the asynchronous BTR algorithm are
summarized in Algorithms 2 and 3. The steps in Algorithm 2 are taken in the master
process and those in Algorithm 3 are taken in the worker processes. Algorithm 2 is
initialized by setting parameters (line 1), collecting the initial bundle information (line
2), and creating the model function \~m0,0 (line 3). The main steps at each iteration
(k, l) are described in the loop (lines 4--45). A new trial point \lambda k,l is obtained by
solving the master (31) (line 5). If the termination criterion is satisfied by \~mk,l(\lambda 

k,l),
the algorithm terminates (lines 6--8). Otherwise, the trial point is queued with the
initial status sk,l\pi \leftarrow ready for all \pi \in \Pi if the queue \Lambda k,l is not full (lines 9--12). For
each available worker process \pi \in \Pi k,l, the master process chooses a trial point \lambda q in
queue \Lambda k,l for the Lagrangian subproblem solutions (line 15), if it exists, and sends it
to the worker process (line 16). Here, we may consider two policies for choosing the
trial points: first-in-first-out (FIFO) and last-in-first-out (LIFO). The convergence



ASYNCHRONOUS DUAL DECOMPOSITION 327

results in section 3.2 are not affected by the choice of policy. If there exists no trial
point to evaluate in the queue, the current trial point is sent to the worker process
(line 19).

We note that the master process does not wait for all the worker processes to
complete the evaluations. The master process receives the subproblem solutions from
at least \Pi worker processes \pi and encodes sq\pi \leftarrow evaluated for each \lambda q and \pi \in \Pi k,l

if the trial point is from the queue (lines 23--27). The parameter \Pi controls the
frequency of each master problem solve. It is possible that | \Pi k,l| > \Pi if the previous
iteration takes time for completing the evaluations in a large enough number of worker
processes. For the trial points evaluated by all worker processes, the master process
chooses the best trial point for the serious step test (8) (line 30). If there exists a trial
point evaluated by all worker processes, the TR size may be updated (lines 33 and
38). If the serious step test is satisfied, the master process updates the TR center (line
35). If there exists no trial point evaluated by all worker processes, the model function
\~mk,l+1 is updated by adding cuts (line 42). Each worker process \pi repeats the steps
in lines 1--5 until receiving the termination signal from the master process. In the
loop, the worker process receives a new trial point \lambda from the master process (line 2),
evaluates it (line 3), and sends the information Dj(\lambda ), xj to the master process (line
4).

3.2. Convergence analysis. We analyze the convergence of Algorithm 2. We
note that for \Pi = | \Pi | , Algorithm 2 is equivalent to Algorithm 1. Therefore, we assume
that \Pi \in (0, | \Pi | ), and we assume that \epsilon = 0 throughout this section. At every major
iteration k \geq 0, we have that \~mk,l+1(\lambda ) \leq \~mk,l(\lambda ) for all l \geq 0.

We first show that Algorithm 2 takes only a finite number of null steps.

Lemma 3.1. Suppose that Algorithm 2 takes a null step at iteration (k, l(1)).
There exist a finite number i > 1 such that the algorithm either makes a serious
step or terminates at iteration (k, l(i)).

Proof. Suppose for contradiction that the algorithm takes null steps at iteration
(k, l(i)) for all i \geq 1. Then, we have for i \geq 1 that

\~mk,l(i)(\lambda 
k,l(i)) - D(\lambda k) > \epsilon (1 + | D(\lambda k)| ) = 0(39)

and

D(\^\lambda k,l(i)) < D(\lambda k) + \xi 
\bigl[ 
\~mk,l(i)(\lambda 

k,l(i)) - D(\lambda k)
\bigr] 
.(40)

Let (ki, li) be the iteration at which \^\lambda k,l(i) was obtained by the master (31) so

that \lambda ki,li = \^\lambda k,l(i) for i \geq 1. For the case when ki < k, the algorithm can find \^\lambda k,l(I)

such that kI = k and lI = l(I) for i < I < \infty . Therefore, we need only consider the
case when ki = k and li \leq l(i). In such a case, there exists some j \in J such that the

linear inequalities generated at \lambda ki,li ,

\theta j \leq D(\lambda ki,li) + (Hjx
ki,li
j )T (\lambda  - \lambda ki,li),(41)

are violated at (\theta ki,li , \lambda ki,li) because\sum 
j\in J

\theta ki,li
j  - D(\lambda ki,li) = \~mki,li(\lambda 

ki,li) - D(\lambda ki,li)

> \~mki,li(\lambda 
ki,li) - D(\lambda k) - \xi [ \~mk,l(i)(\lambda 

k,l(i)) - D(\lambda k)]



328 K. KIM, C. G. PETRA, AND V. M. ZAVALA

Algorithm 2 Asynchronous BTR algorithm.

1: Initialize \lambda 0 \in \BbbR Nn1 ,\Delta 0,0 \in (0,\Delta max], \xi \in (0, 0.5), \epsilon \geq 0, \=\Lambda > 0,\Pi \in 
(0, | \Pi | ],\Lambda 0,0 \leftarrow \emptyset ,\Pi 0,0 \leftarrow \Pi ,\scrB 0,0 \leftarrow \{ 0\} , k \leftarrow 0, and l\leftarrow 0.

2: Solve the Lagrangian subproblem (4) to find Dj(\lambda 
0) and x0

j for all j \in J .
3: Initialize the model function \~m0,0.
4: loop
5: Solve the master (31) to find \lambda k,l.
6: if \~mk,l(\lambda 

k,l) - D(\lambda k) \leq \epsilon (1 + | D(\lambda k)| ) then  \triangleleft Termination test
7: Stop
8: end if
9: if | \Lambda k,l| < \=\Lambda then  \triangleleft Queue new dual variable

10: sk,l\pi \leftarrow ready for all \pi \in \Pi .
11: \Lambda k,l \leftarrow \Lambda k,l \cup \{ (\lambda k,l, sk,l)\} .
12: end if
13: for \pi \in \Pi k,l do  \triangleleft Send dual variables to processes
14: if \exists (\lambda q, sq) \in \Lambda k,l such that sq\pi = ready then
15: Choose an element (\lambda q, sq) \in \Lambda k,l such that sq\pi = ready.
16: Send \lambda q to process \pi .
17: sq\pi \leftarrow assigned.
18: else
19: Send \lambda k,l to process \pi .
20: end if
21: \Pi k,l \leftarrow \Pi k,l\setminus \{ \pi \} .
22: end for
23: repeat  \triangleleft Receive subproblem solutions from processes
24: Receive Dj(\lambda 

q) and xq
j for j \in J\pi from any process \pi \in \Pi .

25: sq\pi \leftarrow evaluated if (\lambda q, \cdot ) \in \Lambda k,l.
26: \Pi k,l \leftarrow \Pi k,l \cup \{ \pi \} .
27: until | \Pi k,l| \geq \Pi 
28: serious\leftarrow false.
29: if \exists (\lambda , s) \in \Lambda k,l such that s\pi = evaluated \forall \pi \in \Pi then

30: \^\lambda k,l \leftarrow argmax\{ D(\lambda ) : (\lambda , s) \in \Lambda k,l, s\pi = evaluated \forall \pi \in \Pi \} 
31: \Lambda k,l \leftarrow \Lambda k,l\setminus \{ (\^\lambda k,l, evaluated)\} 
32: if D(\^\lambda k,l) \geq D(\lambda k) + \xi [ \~mk,l(\lambda 

k,l) - D(\lambda k)] then  \triangleleft Serious step
33: Choose \Delta k+1,0 \in [\Delta k,l,\Delta 

max].
34: Choose \Lambda k+1,0 \subseteq \Lambda k,l.

35: Set \lambda k+1 \leftarrow \^\lambda k,l, \~mk+1,0 \leftarrow \~mk,l,\Pi k+1,0 \leftarrow \Pi k,l, k \leftarrow k + 1, and l\leftarrow 0.
36: serious\leftarrow true.
37: else  \triangleleft Null step
38: Choose \Delta k,l+1 \in (0,\Delta k,l].
39: end if
40: end if
41: if serious = false then  \triangleleft Model update
42: Update the model function \~mk,l+1 by adding cuts (30b).
43: Set \Pi k,l+1 \leftarrow \Pi k,l,\Lambda k,l+1 \leftarrow \Lambda k,l, l\leftarrow l + 1.
44: end if
45: end loop



ASYNCHRONOUS DUAL DECOMPOSITION 329

Algorithm 3 Asynchronous BTR algorithm---Worker (\pi ).

1: repeat
2: Receive new trial point \lambda from the master process.
3: Solve the Lagrangian subproblem (4) to find Dj(\lambda ) and xj for all j \in J\pi .
4: Send Dj(\lambda ), xj for j \in J\pi to the master process.
5: until the master process terminates.

\geq \~mki,li(\lambda 
k,l(i)) - D(\lambda k) - \xi [ \~mk,l(i)(\lambda 

k,l(i)) - D(\lambda k)]

\geq \~mk,l(i)(\lambda 
k,l(i)) - D(\lambda k) - \xi [ \~mk,l(i)(\lambda 

k,l(i)) - D(\lambda k)]

> 0.

Here, the second inequality holds because \lambda ki,li is a maximizer of \~mki,li and the third
inequality holds because \~mk,l is nonincreasing within a given major iteration k. From
Lemma 2.1, the algorithm violates either (39) or (40).

Analogous to Lemma 2.3, we derive a lower bound for the predicted increase in
the lower bound.

Lemma 3.2. For k \geq 0 and l \geq 0, we have that

\~mk,l(\lambda 
k,l) - \~mk,l(\lambda 

k) \geq min

\biggl\{ 
\Delta k,l

\| \lambda \ast  - \lambda k\| 
, 1

\biggr\} \bigl[ 
D(\lambda \ast ) - D(\lambda k)

\bigr] 
.(42)

Proof. The proof follows the steps in the proof of Lemma 2.3.

We now show that Algorithm 2 finds the Lagrangian dual bound in the limit.

Theorem 3.3. Algorithm 2 delivers a sequence of dual iterates \{ \lambda k\} satisfying
limk\rightarrow \infty D(\lambda k)\rightarrow D(\lambda \ast ).

Proof. Let lk be such that \^\lambda k,lk takes a serious step and thus \lambda k+1 = \^\lambda k,l. Since

\~mk,lk(\lambda 
k,lk) - D(\lambda k) \geq \epsilon (1 + | D(\lambda k)| ) > 0(43)

and

D(\^\lambda k,lk) - D(\lambda k) \geq \xi [ \~mk,lk(\lambda 
k,lk) - D(\lambda k)] > 0,(44)

we have D(\lambda k+1)  - D(\lambda k) > 0. Since \{ D(\lambda k)\} is an increasing sequence that is
bounded above by zLD, we have that

lim
k\rightarrow \infty 

D(\lambda k+1) - D(\lambda k) = 0.(45)

Moreover, by Lemma 3.2 we have

\~mk,lk(
\^\lambda k,lk) - \~mk,lk(\lambda 

k) = D(\lambda k+1) - D(\lambda k)

\geq min

\biggl\{ 
\Delta k,lk

\| \lambda \ast  - \lambda k\| 
, 1

\biggr\} \bigl[ 
D(\lambda \ast ) - D(\lambda k)

\bigr] 
.

From (45) and \Delta k,l > 0, we have limk\rightarrow \infty D(\lambda \ast ) - D(\lambda k) = 0.



330 K. KIM, C. G. PETRA, AND V. M. ZAVALA

3.3. Dynamic subproblem allocation. Algorithm 2 runs for a fixed (static)
set J\pi for each \pi \in \Pi , where each worker process is allocated to certain scenario
subproblems for all iterations. The allocation of worker processes is advantageous
because each mixed-integer programming (MIP) subproblem solver can take advan-
tage of the warm-start feature given in off-the-shelf MIP solvers. However, the static
allocation of subproblems can cause parallel inefficiency, because one of the worker
processes might present a computational bottleneck for evaluating the trial points in
queue.

The asynchronous computation in Algorithm 2 can be varied by dynamically allo-
cating the subproblems to the worker processes. With dynamic allocation, the worker
processes are not dedicated to certain scenario subproblems and can possibly solve
different scenario subproblems at each iteration. An asynchronous algorithm with
dynamic allocation can be obtained by performing minor modifications to Algorithm
2. In particular, we need only keep track of the status of the evaluation of the trial
points in the queue for each scenario subproblem, as compared with that for each
worker process in Algorithm 2. Similar to the definition of sq\pi used in Algorithm 2,
we define \~sqj as the status of evaluation of trial point \lambda q for scenario index j \in J , and
\~sq := (\~sqj \forall j \in J). The modified steps are summarized in Algorithm 4.

The initial queue status \~sk,lj is set for each scenario j \in J in line 10. We choose
a trial point that is not evaluated for some scenarios and send it to a worker process
(lines 14--17). For the choice of trial points, we are interested in FIFO and LIFO
policies, as mentioned in subsection 3.1. The rest of the algorithm was modified
in order to apply the modified notation \~s for updating and checking the status of
evaluating trial points for each scenario (lines 25 and 29--30). We note that the
convergence analysis given in subsection 3.2 holds for Algorithm 4.

4. Numerical experiments. In this section, we present numerical experiments
for the synchronous and asynchronous BTR algorithms.

4.1. Implementation. We have implemented the proposed algorithms in the
open-source and parallel software package DSP [14]. The master problem and MIP
subproblems were solved using CPLEX 12.7. The master problem was solved using
a barrier method with 16 parallel cores, whereas the MIP subproblems were solved
with default parameter settings. Moreover, the subproblems were solved in parallel
by using MPI, and each process uses a single core. The subproblems are distributed
to the processes in a round-and-robin fashion (except for the dynamic allocation
strategy in subsection 4.5). The processes create a CPLEX solver environment for
each subproblem in order to take advantage of the CPLEX warm-starting feature, as
well as to avoid data loading time. All computations were performed on the Blues
cluster---a 630-node computing cluster at Argonne National Laboratory. For both
the synchronous and asynchronous BTR algorithms, we set \lambda 0 = 0. We also set
the parameters \=\rho = 3, \rho = 4, \Delta = 10 - 2, \=\Delta = 104,\Delta 0,0 = 102, \xi = 10 - 4, and \epsilon =

10 - 5. We considered different values for parameters \=\Lambda ,\Pi of Algorithm 2 to evaluate
performance, as discussed in subsection 4.4.

4.2. Problem instances. We use a day-ahead stochastic unit commitment
(SUC) problem with data representing a test system for the California independent
system operator (CAISO) interconnected with the Western Electricity Coordinating
Council (WECC), as discussed in [21, 13, 11]. The SUC problem instances embed
difficult MIP scenario subproblems that induce strong load imbalances. The test sys-
tem consists of 225 buses, 375 transmission lines, 130 generators, 40 loads, 5 import



ASYNCHRONOUS DUAL DECOMPOSITION 331

Algorithm 4 Asynchronous subsection algorithm with dynamic subproblem alloca-
tion.

1: Initialize \lambda 0 \in \BbbR Nn1 ,\Delta 0,0 \in (0,\Delta max], \xi \in (0, 0.5), \epsilon \geq 0, \=\Lambda > 0,\Pi \in 
(0, | \Pi | ],\Lambda 0,0 \leftarrow \emptyset ,\Pi 0,0 \leftarrow \Pi ,\scrB 0,0 \leftarrow \{ 0\} , k \leftarrow 0, and l\leftarrow 0.

2: Solve the Lagrangian subproblem (4) to find Dj(\lambda 
0) and x0

j for all j \in J .
3: Initialize the model function \~m0,0.
4: loop
5: Solve the master (31) to find \lambda k,l.
6: if \~mk,l(\lambda 

k,l) - D(\lambda k) \leq \epsilon (1 + | D(\lambda k)| ) then  \triangleleft Termination test
7: Stop
8: end if
9: if | \Lambda k,l| < \=\Lambda then  \triangleleft Queue new dual variable

10: \~sk,lj \leftarrow ready for all j \in J .

11: \Lambda k,l \leftarrow \Lambda k,l \cup \{ (\lambda k,l, \~sk,l)\} .
12: end if
13: for \pi \in \Pi k,l do  \triangleleft Dynamic allocation of dual variables to processes
14: if \exists (\lambda q, sq) \in \Lambda k,l such that \~sqj = ready for any j \in J then
15: Choose an element (\lambda q, \~sq) \in \Lambda k,l such that \~sqj = ready for some j \in J .
16: Send \lambda q to process \pi .
17: \~sqj \leftarrow assigned and J\pi \leftarrow \{ j\} .
18: else
19: Send \lambda k,l to process \pi .
20: end if
21: \Pi k,l \leftarrow \Pi k,l\setminus \{ \pi \} .
22: end for
23: repeat  \triangleleft Receive subproblem solutions from processes
24: Receive Dj(\lambda 

q) and xq
j from any process \pi \in \Pi .

25: \~sqj \leftarrow evaluated if (\lambda q, \cdot ) \in \Lambda k,l.
26: \Pi k,l \leftarrow \Pi k,l \cup \{ \pi \} .
27: until | \Pi k,l| \geq \Pi 
28: serious\leftarrow false.
29: if \exists (\lambda , \~s) \in \Lambda k,l such that \~sj = evaluated \forall j \in J then

30: \^\lambda k,l \leftarrow argmax\{ D(\lambda ) : (\lambda , \~s) \in \Lambda k,l, \~sj = evaluated \forall j \in J\} 
31: \Lambda k,l \leftarrow \Lambda k,l\setminus \{ (\^\lambda k,l, evaluated)\} 
32: if D(\^\lambda k,l) \geq D(\lambda k) + \xi [ \~mk,l(\lambda 

k,l) - D(\lambda k)] then  \triangleleft Serious step
33: Choose \Delta k+1,0 \in [\Delta k,l,\Delta 

max].
34: Choose \Lambda k+1,0 \subseteq \Lambda k,l.

35: Set \lambda k+1 \leftarrow \^\lambda k,l, \~mk+1,0 \leftarrow \~mk,l,\Pi k+1,0 \leftarrow \Pi k,l, k \leftarrow k + 1 and l\leftarrow 0.
36: serious\leftarrow true.
37: else  \triangleleft Null step
38: Choose \Delta k,l+1 \in (0,\Delta k,l].
39: end if
40: end if
41: if serious = false then  \triangleleft Model update
42: Update the model function \~mk,l+1 by adding cuts (30b).
43: Set \Pi k,l+1 \leftarrow \Pi k,l,\Lambda k,l+1 \leftarrow \Lambda k,l, l\leftarrow l + 1.
44: end if
45: end loop



332 K. KIM, C. G. PETRA, AND V. M. ZAVALA

6 12 18 24
Hour

8000

10000

12000

14000

16000

18000

20000

Ne
t L

oa
d 
(M

W
)

SpringWD
SpringWE
SummerWD
SummerWE
FallWD
FallWE
WinterWD
WinterWE

Fig. 1. Net load of the test system for the 24-hour time horizon for each day type. WD and
WE in the legend stand for weekdays and weekends, respectively.

points, 5 wind farms, and 11 nonwind renewable generators. Of the 130 generators,
90 generators are fast generators capable of starting in response to demand. The
other 40 generators are slow generators. In the SUC problem instances, we con-
sider a 24-hour time horizon with hourly intervals. The amount of power at import
points and renewable generators and loads are categorized in eight day types. Each
day type is a combination of elements in two sets \{ Spring,Summer,Fall,Winter\} and
\{ Weekdays,Weekends\} . The load is calculated by the amount of total system load
subtracted by total import power and renewable power, excluding wind power (see
Figure 1). In addition to the eight day types, we use 160 scenarios of wind power
generation at each wind farm and for each season (see Figure 2).

We use \scrN ,\scrL , \scrT , and \scrS to represent sets of buses, transmission lines, time periods,
and scenarios, respectively. In addition, \scrL +

n and \scrL  - 
n \subset \scrL represent the set of trans-

mission lines to and from bus n \in \scrN , respectively. We use \scrG n,\scrD n, \scrI n,\scrR n, and \scrW n to
denote sets of generators, loads, import points, renewable generators, and wind farms
at bus n \in \scrN , respectively. We also define \scrG :=

\sum 
n\in \scrN \scrG n and denote by \scrG S the

set of slow generators that should be scheduled a day ahead. Let ugts, vgts, and pgts
be the decision variables for unit commitment, generator start, and power generation
amount, respectively, for g \in \scrG , t \in \scrT , s \in \scrS . Let flts be the decision variables for
power flow on transmission line l \in \scrL , and let \theta nts be the decision variables for phase
angles at bus n \in \scrN . Let djts,mits, rits, and wits be the slack variables representing
load shedding, import spillage, renewable generation spillage, and wind generation
spillage, respectively.

The formulation of the SUC problem is given by the following two-stage stochastic
mixed-binary program:

min
\sum 
t\in \scrT 

\sum 
s\in \scrS 

1

| \scrS | 

\left[  \sum 
g\in \scrG 

(Kgugts + Sgvgts + Cgpgts) +
\sum 
j\in \scrD 

V djts

\right]  (46a)

s.t. ugts = ugt,s - 1 \forall g \in \scrG S , t \in \scrT , s \in \scrS ,(46b)

vgts = vgt,s - 1 \forall g \in \scrG S , t \in \scrT , s \in \scrS ,(46c)



ASYNCHRONOUS DUAL DECOMPOSITION 333

6 12 18 24
Hour

0

1000

2000

3000

4000

5000

6000

7000

W
in
d 
Po
we

r G
en

er
at
io
n 
(M

W
)

(a) Spring

6 12 18 24
Hour

0

1000

2000

3000

4000

5000

6000

7000

W
in
d 
Po
we

r G
en

er
at
io
n 
(M

W
)

(b) Summer

6 12 18 24
Hour

0

1000

2000

3000

4000

5000

6000

7000

W
in
d 
Po
we

r G
en

er
at
io
n 
(M

W
)

(c) Fall

6 12 18 24
Hour

0

1000

2000

3000

4000

5000

6000

7000

W
in
d 
Po
we

r G
en

er
at
io
n 
(M

W
)

(d) Winter

Fig. 2. Total amount of wind power for each season. Scenarios are shown in grey and the
mean is in blue. (Figure in color online.)

t\sum 
q=t - UTg+1

vgqs \leq ugts \forall g \in \scrG , t \in \{ UTg, . . . , T\} , s \in \scrS ,(46d)

t+DTg\sum 
q=t+1

vgqs \leq ugts \forall g \in \scrG , t \in \{ 1, . . . , T  - DTg\} , s \in \scrS ,(46e)

vgts \geq ugts  - ug,t - 1,s \forall g \in \scrG , t \in \scrT , s \in \scrS ,(46f) \sum 
l\in \scrL +

n

flts  - 
\sum 
l\in \scrL  - 

n

flts +
\sum 
g\in \scrG n

pgts =
\sum 
j\in \scrD n

(Djt  - djts)

 - 
\sum 
i\in \scrI n

(Mit  - mits) - 
\sum 
i\in \scrR n

(Rit  - rits)

 - 
\sum 
i\in \scrW n

(Wits  - wits) \forall n \in \scrN , t \in \scrT , s \in \scrS ,(46g)

flts = Bl(\theta mts  - \theta nts) \forall l = (m,n) \in \scrL , t \in \scrT , s \in \scrS ,(46h)

ugts \in \{ 0, 1\} , vgts \in [0, 1] \forall g \in \scrG , t \in \scrT , s \in \scrS ,(46i)

Pmin
g ugts \leq pgts \leq Pmax

g ugts \forall g \in \scrG , t \in \scrT , s \in \scrS ,(46j)

 - Fmax \leq flts \leq Fmax \forall l \in \scrL , t \in \scrT , s \in \scrS ,(46k)



334 K. KIM, C. G. PETRA, AND V. M. ZAVALA

 - 360 \leq \theta nts \leq 360 \forall n \in \scrN , t \in \scrT , s \in \scrS ,(46l)

0 \leq djts \leq Djt \forall j \in \scrD n, n \in \scrN , t \in \scrT , s \in \scrS ,(46m)

0 \leq mits \leq Mit \forall i \in \scrI n, n \in \scrN , t \in \scrT , s \in \scrS ,(46n)

0 \leq rits \leq Rit \forall i \in \scrR n, n \in \scrN , t \in \scrT , s \in \scrS ,(46o)

0 \leq wits \leq Wits \forall i \in \scrW n, n \in \scrN , t \in \scrT , s \in \scrS ,(46p)

where (46b) and (46c) are the nonanticipativity constraints on the first-stage variables
ugts and vgts for g \in \scrG S , t \in \scrT , s \in \scrS (i.e., commitment decisions for slow genera-
tors). The objective function (46a) minimizes the expected total operating cost that
sums commitment cost Kg, generator startup cost Sg, generation cost Cg, and load
shedding cost V (set to \$5,000/MWh). Equations (46d) and (46e) are, respectively,
the minimum uptime UTg and downtime DTg constraints for each generator g \in \scrG .
Constraint (46f) imposes the unit commitment logic. Constraint (46g) represents the
power balance equation with load Djt, import power Mit, renewable generation Rit,
and wind generation Wits. Constraint (46h) represents the direct current power flow
equation with line susceptance Bl. Constraints (46j) and (46k) impose the minimum
Pmin
g and maximum Pmax

g generation capacity and transmission line capacity Fmax,
respectively.

Using the net load data and the wind generation scenarios, we created 80 SUC
problem instances. Each instance uses 16 scenarios for wind power generation. The
scenario subproblems are distributed in a round-and-robin fashion, and we also explore
the dynamic allocation described in subsection 4.5. For each problem instance, the
first stage has 1,920 variables and 1,960 constraints, and the second stage has 21,144
variables and 21,930 constraints. Therefore, each SUC instance has 340,224 variables
and 352,840 constraints.

4.3. Synchronous computing and load balance. We first present computa-
tional times and load balancing for the synchronous BTR algorithm to highlight the
impact of load imbalancing on efficiency. We solve the 80 problem instances by using
DSP with 32 cores on the Blues cluster. The master process uses 16 cores, and worker
processes use the other 16 cores for solving MIP subproblems in parallel. We define
the set of problem instances as \scrP . The load balance is quantified by using the percent
imbalance metric, as defined in [22]. Specifically, we define the percent imbalance
metric of problem instance p \in \scrP and for each iteration k as

\nu pk :=

\biggl( 
tmax
pk

\=tpk
 - 1

\biggr) 
\times 100\%,(47)

where tmax
pk and \=tpk are the maximum and mean subproblem solution times, respec-

tively, for problem instance p over all worker processes at iteration k. We also define
\=\nu p := maxk \nu pk and \nu p := mink \nu pk. We denote by \nu mp the mean percent imbalance
metric over all iterations. The computational results are reported in Table 1, where t
represents the total solution time (in seconds) and tLB denotes the total time spent
in the computation of the lower bound.

For the 80 problem instances, the total solution time ranges from 1,406 to 10,782
seconds. The average solution time is 3,193 seconds, of which 3,118 seconds were
spent on the lower bounding problem. The average lower bounding time per iteration
is 20 seconds. Figure 3 summarizes the distribution of the average percent imbalance
metrics, where the y-axis presents the number of problem instances such that the
percent imbalance metric is greater than or equal to the x-axis value. The average



ASYNCHRONOUS DUAL DECOMPOSITION 335

percent imbalance metrics range from 27\% to 84\%. The average percent imbalance is
larger than 50\% for the 18 problem instances.

Table 1: Computational results and percent imbalance metric from the synchronous
BTR algorithm.

Instance Iter zLD t tLB \=\nu p \nu p \nu mp
SpringWD0 125 1602068 2439 2369 86\% 17\% 51\%
SpringWD1 141 1799653 3026 2937 98\% 20\% 42\%
SpringWD2 108 1787644 2046 1989 56\% 15\% 29\%
SpringWD3 130 1726987 2567 2489 82\% 18\% 41\%
SpringWD4 165 1898284 3182 3061 74\% 18\% 35\%
SpringWD5 132 1999293 2767 2691 57\% 14\% 31\%
SpringWD6 115 1615039 2170 2109 108\% 22\% 47\%
SpringWD7 196 1607014 5209 4963 138\% 19\% 73\%
SpringWD8 179 1725101 4134 3932 91\% 22\% 47\%
SpringWD9 126 1782099 2433 2357 94\% 21\% 42\%
SpringWE0 140 1044900 2397 2337 77\% 13\% 36\%
SpringWE1 121 1114237 1826 1772 73\% 10\% 32\%
SpringWE2 123 1110895 2211 2161 96\% 21\% 43\%
SpringWE3 132 1084464 2410 2345 93\% 18\% 51\%
SpringWE4 111 1199183 1653 1608 77\% 12\% 30\%
SpringWE5 118 1259176 1732 1681 62\% 15\% 31\%
SpringWE6 176 974356 2960 2700 98\% 18\% 42\%
SpringWE7 154 1007195 2682 2598 94\% 18\% 47\%
SpringWE8 138 1090599 2252 2181 76\% 10\% 39\%
SpringWE9 121 1133203 1899 1760 96\% 17\% 37\%
SummerWD0 189 4710799 5086 4874 110\% 18\% 50\%
SummerWD1 149 4753046 4269 4225 115\% 20\% 48\%
SummerWD2 112 4800483 2798 2771 121\% 19\% 52\%
SummerWD3 208 4693318 5948 5532 97\% 19\% 50\%
SummerWD4 149 4743635 3189 3019 60\% 12\% 34\%
SummerWD5 288 4549022 10782 6942 164\% 0\% 82\%
SummerWD6 175 4698568 5719 5497 174\% 19\% 85\%
SummerWD7 134 4644613 3584 3449 103\% 24\% 51\%
SummerWD8 115 4827235 2516 2487 64\% 17\% 34\%
SummerWD9 276 4678698 8794 8181 123\% 23\% 60\%
SummerWE0 160 3159044 3176 3010 61\% 15\% 34\%
SummerWE1 85 3200891 1408 1390 75\% 16\% 31\%
SummerWE2 80 3237591 1406 1390 77\% 14\% 32\%
SummerWE3 129 3162672 2182 2078 67\% 12\% 28\%
SummerWE4 91 3208814 1627 1572 51\% 12\% 29\%
SummerWE5 163 3057287 2992 2838 111\% 17\% 42\%
SummerWE6 151 3141373 2621 2477 61\% 14\% 30\%
SummerWE7 111 3108884 2027 1955 71\% 15\% 30\%
SummerWE8 90 3248660 1719 1662 66\% 15\% 34\%
SummerWE9 206 3161301 3876 3503 63\% 13\% 32\%
FallWD0 165 2444953 5421 5288 75\% 29\% 52\%

Continued on next page



336 K. KIM, C. G. PETRA, AND V. M. ZAVALA

Table 1 -- Continued from the previous page
Instance Iter zLD t tLB \=\nu p \nu p \nu mp
FallWD1 150 2555819 5897 5768 129\% 19\% 63\%
FallWD2 144 2495699 4225 4120 101\% 25\% 49\%
FallWD3 265 2470042 10244 9543 123\% 23\% 61\%
FallWD4 175 2562315 5528 5338 95\% 23\% 48\%
FallWD5 184 2563568 5260 5059 92\% 23\% 48\%
FallWD6 159 2481434 4468 4340 79\% 15\% 46\%
FallWD7 154 2624963 4052 3916 113\% 18\% 54\%
FallWD8 164 2525282 4746 4582 84\% 15\% 43\%
FallWD9 168 2406007 4498 4331 90\% 23\% 48\%
FallWE0 121 1542897 1925 1860 75\% 16\% 40\%
FallWE1 108 1622543 1705 1649 76\% 16\% 37\%
FallWE2 149 1550416 3040 2918 75\% 22\% 44\%
FallWE3 134 1541075 2436 2357 100\% 22\% 46\%
FallWE4 107 1627667 1849 1796 79\% 16\% 39\%
FallWE5 115 1631388 1903 1751 63\% 16\% 35\%
FallWE6 112 1567312 1785 1727 71\% 14\% 38\%
FallWE7 97 1687574 1835 1788 92\% 21\% 44\%
FallWE8 101 1589716 1791 1741 102\% 13\% 43\%
FallWE9 113 1503765 1775 1718 75\% 18\% 35\%
WinterWD0 146 1869441 2994 2899 71\% 18\% 39\%
WinterWD1 147 1952864 3243 3141 130\% 25\% 58\%
WinterWD2 110 1674367 1925 1866 105\% 20\% 47\%
WinterWD3 136 1786630 2923 2839 125\% 29\% 58\%
WinterWD4 117 1735955 1992 1926 80\% 17\% 38\%
WinterWD5 142 1932486 2937 2844 73\% 21\% 38\%
WinterWD6 137 2036682 2941 2841 74\% 16\% 42\%
WinterWD7 143 1994766 3170 3075 70\% 19\% 40\%
WinterWD8 138 1738391 2656 2566 97\% 25\% 47\%
WinterWD9 136 1733211 2452 2364 103\% 19\% 41\%
WinterWE0 130 1293480 2108 2038 83\% 16\% 38\%
WinterWE1 147 1341952 2556 2461 87\% 16\% 36\%
WinterWE2 129 1166758 1985 1926 64\% 16\% 36\%
WinterWE3 197 1238547 3505 3302 119\% 23\% 60\%
WinterWE4 119 1209598 1821 1768 72\% 16\% 39\%
WinterWE5 156 1336934 2693 2582 94\% 21\% 44\%
WinterWE6 122 1403328 1843 1778 78\% 18\% 38\%
WinterWE7 141 1375098 2341 2255 101\% 18\% 38\%
WinterWE8 110 1187088 1770 1724 75\% 23\% 41\%
WinterWE9 197 1207103 5494 5249 233\% 22\% 76\%

4.4. Asynchronous computing and performance profiles. We analyze the
computational performance of the asynchronous BTR algorithms. In this section, we
collect the numerical results based on the variant that statically allocates subproblems
to the worker processes and chooses the first element of the queue for trial points (i.e.,
FIFO). We use the metrics for the performance profile in [6]. We use \scrC to define the
set of solver configurations. For each problem p \in \scrP and configuration c \in \scrC , we use
tpc to denote the solution time for solving problem p under configuration c. We define



ASYNCHRONOUS DUAL DECOMPOSITION 337

30 40 50 60 70 80
̄ν̄(%)

0

10

20

30

40

50

60

70

80

| {p
∈
P
:ν̄

p
≥
ν̄ }
|

Fig. 3. Distribution of the average percent imbalance metrics resulting from the synchronous
BTR method.

the performance ratio

rpc :=
tpc

minc\in \scrC tpc
(48)

that represents the performance of configuration c as compared with the best per-
formance by any solver configuration on problem p. We now define the performance
of configuration c on any given problem as the probability for configuration c that a
performance ratio rpc is within a factor \tau of the best possible ratio. In other words,

\rho c(\tau ) :=
1

| \scrP | 
| \{ p \in \scrP : rpc \leq \tau \} | .(49)

We compare the performance of the synchronous and asynchronous BTR strategies
with different algorithmic settings. In our numerical experiments, we vary the maxi-
mum queue size \=\Lambda \in \{ 1, 2\} and the minimum number of worker processes to receive
bundle information \Pi \in \{ 1, 4, 8\} .

Figure 4 shows the performance of the synchronous and asynchronous BTR al-
gorithms for \=\Lambda = 1 and \Pi \in \{ 1, 4, 8\} . We label the synchronous method ``Sync"" and
label the asynchronous method with \=\Lambda = m and \Pi = n ``Async-QmPn."" We see
that the asynchronous algorithm results in higher probabilities than the synchronous
counterpart for any factor \tau . In Figure 4a we present profiles for all instances; we
can see that Async-Q1P1 has the most wins (with a probability of 0.41) and that
Sync has the least wins (with a probability of 0.11). In Figure 4b we profile the
solvers for highly imbalanced instances (\mu p \geq 50\%); we see that the probability that
Async-Q1P1 is the best solver increases to 0.66, whereas the probability that Sync is
the best solver becomes zero. We also observe that the asynchronous algorithms tend
to be less competitive with a large value of \Pi . We also note that the asynchronous
algorithm with \Pi = 16 is equivalent to the synchronous counterpart.

In Figure 5 we present results for the case in which we allow for more capacity
for the queue of trial points (\=\Lambda = 2). We see that the asynchronous method is faster
than the synchronous method in 87\% of the problem instances. Async-Q2P4 is more
competitive than Async-Q2P1 for the highly imbalanced problem instances. Async-
Q2P8 has a lower number of wins than Sync, but the performance becomes much more



338 K. KIM, C. G. PETRA, AND V. M. ZAVALA

1.0 1.5 2.0 2.5 3.0 3.5 4.0
τ

0.0

0.2

0.4

0.6

0.8

1.0

ρ s
(τ
)

Sync
Async-Q1P1
Async-Q1P4
Async-Q1P8

(a) All instances

1.0 1.5 2.0 2.5 3.0 3.5 4.0
τ

0.0

0.2

0.4

0.6

0.8

1.0

ρ s
(τ
)

Sync
Async-Q1P1
Async-Q1P4
Async-Q1P8

(b) Highly imbalanced instances (\nu p \geq 50\%)

Fig. 4. Performance profile for \=\Lambda = 1 and \Pi \in \{ 1, 4, 8\} .

1.0 1.5 2.0 2.5 3.0 3.5 4.0
τ

0.0

0.2

0.4

0.6

0.8

1.0

ρ s
(τ
)

Sync
Async-Q2P1
Async-Q2P4
Async-Q2P8

(a) All instances

1.0 1.5 2.0 2.5 3.0 3.5 4.0
τ

0.0

0.2

0.4

0.6

0.8

1.0

ρ s
(τ
)

Sync
Async-Q2P1
Async-Q2P4
Async-Q2P8

(b) Highly imbalanced instances (\nu p \geq 50\%)

Fig. 5. Performance profile for \=\Lambda = 2 and \Pi \in \{ 1, 4, 8\} .

competitive if we extend \tau of interest to 1.02 or larger. This implies that the more
frequent updating of dual variables is not always advantageous from a computational
performance stand-point.

4.5. Variations of asynchronous computing. We present computational re-
sults for the asynchronous BTR algorithm with variations in algorithmic settings. In
particular, we compare different strategies for choosing trial points (i.e., FIFO versus
LIFO) and for allocating subproblems to worker processes (i.e., static versus dynamic).
Figures 6 and 7 show the performance plots for the asynchronous algorithms with the
different settings. We label the asynchronous algorithm``X-Y -QmPn"" for each set-
ting X \in \{ Static,Dynamic\} and Y \in \{ FIFO,LIFO\} . To highlight the impact on
performance, we use the highly imbalanced problem instances.

Figure 6 shows the performance profiles, as defined in subsection 4.4, for the
synchronous and asynchronous algorithms with trial points chosen based on FIFO
and LIFO. We perform the numerical experiments with \=\Lambda = 2. Note that FIFO and
LIFO are equivalent when \=\Lambda = 1. The FIFO policy is faster than the LIFO policy,
regardless of the other algorithmic settings (e.g., static versus dynamic subproblem



ASYNCHRONOUS DUAL DECOMPOSITION 339

1.0 1.5 2.0 2.5 3.0 3.5 4.0
τ

0.0

0.2

0.4

0.6

0.8

1.0

ρ s
(τ
)

Sync
Static-FIFO-Q2P1
Static-FIFO-Q2P4
Static-FIFO-Q2P8
Static-LIFO-Q2P1
Static-LIFO-Q2P4
Static-LIFO-Q2P8

(a) Static

1 2 3 4 5 6 7 8
τ

0.0

0.2

0.4

0.6

0.8

1.0

ρ s
(τ
)

Sync
Dynamic-FIFO-Q2P1
Dynamic-FIFO-Q2P4
Dynamic-FIFO-Q2P8
Dynamic-LIFO-Q2P1
Dynamic-LIFO-Q2P4
Dynamic-LIFO-Q2P8

(b) Dynamic

Fig. 6. Performance profile of the asynchronous variations (FIFO versus LIFO) with \=\Lambda = 2
for highly imbalanced instances (\nu p \geq 50\%).

allocations). The reason is that the LIFO policy delays the complete evaluation of
trial points (i.e., satisfying the condition at line 30 in Algorithm 4) by evaluating new
trial points only. In particular, the LIFO policy is slower with the larger queue size
(i.e., Q2 versus Q1).

Figure 7 compares the computational performance for the subproblem allocation
policies (static versus dynamic). Static allocation is faster than dynamic allocation,
regardless of the other settings (e.g., FIFO versus LIFO). The subproblem solution
time must be increased in dynamic allocation, for which the wart-starting feature in
CPLEX is no longer available when different subproblems are solved from iteration to
iteration. We also observe that dynamic allocation is even slower than the synchronous
method for many instances. Consistent to the observations in subsection 4.4, we found
that the frequent update of dual variables tends to be advantageous, but not always.

4.6. Scalability. We now demonstrate parallel scalability of the asynchronous
BTR algorithm for the 80 problem instances. We perform the scaling experiments
based on the static subproblem allocation, the FIFO scheme for choosing trial points,
\=\Lambda = 1, and \Pi = 1 (i.e., Static-FIFO-Q1P1). We use 2, 4, 8, 16, and 32 computing
cores to parallelize the asynchronous method, for which half the computing cores
are used in the master problem solution and the others are used in the subproblem
solutions. For the instance with eight cores, four of the cores are used to parallelize
the subproblem solutions, and the other four are used for solving the master with the
barrier solver. Figure 8 shows scaling performance results of the method. We define
the speedup as the solution time with N cores to that with two cores. The solution
times for each set of 80 instances are shown as a box plot. The linear speedup (red
dashed line in Figure 8) is achieved when the speedup increases proportional to the
number of cores, which represents the ideal strong scaling efficiency. We observe that
the mean scaling plot for the asynchronous method is closely aligned with the linear
scaling line, which implies that the asynchronous method scales up as the number
of cores increases with respect to the mean solution time. We also highlight that
the scalability results are consistent with those of the synchronous variant reported
in [14]. Note, however, that the efficiency degrades as the number of cores increases,
due to Amdahl's law.



340 K. KIM, C. G. PETRA, AND V. M. ZAVALA

2 4 6 8 10
τ

0.0

0.2

0.4

0.6

0.8

1.0

ρ s
(τ
)

Sync
Static-FIFO-Q1P1
Static-FIFO-Q1P4
Static-FIFO-Q1P8
Dynamic-FIFO-Q1P1
Dynamic-FIFO-Q1P4
Dynamic-FIFO-Q1P8

(a) FIFO-Q1

1 2 3 4 5 6 7 8 9 10
τ

0.0

0.2

0.4

0.6

0.8

1.0

ρ s
(τ
)

Sync
Static-FIFO-Q2P1
Static-FIFO-Q2P4
Static-FIFO-Q2P8
Dynamic-FIFO-Q2P1
Dynamic-FIFO-Q2P4
Dynamic-FIFO-Q2P8

(b) FIFO-Q2

1 2 3 4 5 6 7 8
τ

0.0

0.2

0.4

0.6

0.8

1.0

ρ s
(τ
)

Sync
Static-LIFO-Q1P1
Static-LIFO-Q1P4
Static-LIFO-Q1P8
Dynamic-LIFO-Q1P1
Dynamic-LIFO-Q1P4
Dynamic-LIFO-Q1P8

(c) LIFO-Q1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
τ

0.0

0.2

0.4

0.6

0.8

1.0
ρ s
(τ
)

Sync
Static-LIFO-Q2P1
Static-LIFO-Q2P4
Static-LIFO-Q2P8
Dynamic-LIFO-Q2P1
Dynamic-LIFO-Q2P4
Dynamic-LIFO-Q2P8

(d) LIFO-Q2

Fig. 7. Performance profile for the asynchronous variations (Static versus Dynamic) for highly
imbalanced instances (\nu p \geq 50\%).

5. Summary and directions of future work. We have developed synchronous
and asynchronous variants of a bundle-trust-region (BTR) algorithm within the con-
text of Lagrangian dual decomposition applied to stochastic mixed-integer programs.
The BTR algorithm solves the Lagrangian dual of the SMIP by using a cutting-plane
method with a trust region on the dual search space. In the synchronous variant,
cutting-planes from all scenario subproblems are used to update the trust region and
update the dual search step. We proved that this algorithm converges to the La-
grangian dual bound of the SMIP, and we proved that convergence is independent
of the choice of the trust-region norm and of bundle management steps. Unfortu-
nately, this algorithm suffers from parallel inefficiencies due to computational load
imbalance in the solution of scenario subproblems (which are solved to obtain the
cutting planes). Motivated by this, we developed an asynchronous variant that uses
only a subset of the subproblem solutions to update the trust region and compute
the dual step. For this method, we devised a trust-region update strategy that uses
only trial points of a queue, while the other trial points may be used to update the
Lagrangian master problem. We also considered the variations of the algorithmic set-
tings: FIFO/LIFO policies for choosing trial points and static/dynamic subproblem
allocations. We proved that all variants of the asynchronous algorithm converge to



ASYNCHRONOUS DUAL DECOMPOSITION 341

2 4 8 16 32
Number of Computing Cores

100

101

Sp
ee

du
p

Mean Scaling
Linear Scaling

Fig. 8. Scaling efficiency results for asynchronous BTR algorithm (Static-FIFO-Q1P1).

the optimal Lagrangian dual bound of the SMIP.
The synchronous and asynchronous BTR algorithms are implemented in the open-

source parallel software package DSP. In our numerical experiments, we used the
WECC test system data and created 80 instances of a SUC problem that schedules
a set of power generators and dispatches power to satisfy the demand of the system
under uncertain wind power generation. The results show that the asynchronous algo-
rithm solves the problem instances significantly faster than the synchronous counter-
part (particularly in the highly imbalanced problem instances). Moreover, we showed
that the asynchronous algorithm achieves strong scaling.

If the master problem is relatively more time-consuming than the evaluation of
the subproblems, the computational benefit of the asynchronous approach will not be
as evident. Such a case can be observed when the subproblems are linear programs
and/or when the first stage has a significantly large number of variables. In such
a case, the parallelization of master problem solution would improve the computa-
tional performance, as shown in [18]. However, the parallelization approach in [18] is
based on a parallel Schur complement decomposition that would also suffer from the
large number of first-stage variables. Therefore, new parallelization approaches for
the master problem are an interesting research path for future work. In addition, a
computational comparison with other nonsmooth methods (e.g., [3, 4, 24]) could be
of interest. As part of future work, we will also seek to improve the asynchronous
method by adaptively changing the parameters \=\Lambda and \Pi in order to maximize com-
putational performance. In particular, highly imbalanced instances can be detected
after a few synchronous iterations, and this information can be used to tune the pa-
rameters of asynchronous iterations. Moreover, inexact evaluation of the Lagrangian
subproblems can further be incorporated into the incremental framework to further
alleviate load imbalances (e.g., [16, 7, 24]). Motivated by the observation that the
dynamic allocation is slower than the static allocation as in subsection 4.5, one can
also design a partial dynamic allocation such that each process can take and solve
only certain subproblems in the allocation scheme, which would allow us to use the
warm-starting feature.

Acknowledgment. We gratefully acknowledge the computing resources pro-
vided on Blues, a high-performance computing cluster operated by the Laboratory



342 K. KIM, C. G. PETRA, AND V. M. ZAVALA

Computing Resource Center at Argonne National Laboratory.

REFERENCES

[1] S. Ahmed, A scenario decomposition algorithm for 0--1 stochastic programs, Oper. Res. Lett.,
41 (2013), pp. 565--569.

[2] I. Aravena and A. Papavasiliou, A distributed asynchronous algorithm for the two-stage
stochastic unit commitment problem, in IEEE Power \& Energy Society General Meeting,
IEEE, 2015, pp. 1--5.

[3] D. P. Bertsekas, Incremental proximal methods for large scale convex optimization, Math.
Program., 129 (2011), pp. 163--195.

[4] D. P. Bertsekas, Incremental Aggregated Proximal and Augmented Lagrangian Algorithms,
preprint, https://arxiv.org/abs/1509.09257, 2015.

[5] C. C. Car{\e}e and R. Schultz, Dual decomposition in stochastic integer programming, Oper.
Res. Lett., 24 (1999), pp. 37--45.

[6] E. D. Dolan and J. J. Mor\'e, Benchmarking optimization software with performance profiles,
Math. Program., 91 (2002), pp. 201--213.

[7] G. Emiel and C. Sagastiz\'abal, Incremental-like bundle methods with application to energy
planning, Comput. Optim. Appl., 46 (2010), pp. 305--332.

[8] F. Fischer and C. Helmberg, A parallel bundle framework for asynchronous subspace op-
timization of nonsmooth convex functions, SIAM J. Optim., 24 (2014), pp. 795--822,
https://doi.org/10.1137/120865987.

[9] A. Frangioni, Generalized bundle methods, SIAM J. Optim., 13 (2002), pp. 117--156, https:
//doi.org/10.1137/S1052623498342186.

[10] M. Gaudioso, G. Giallombardo, and G. Miglionico, An incremental method for solving
convex finite min-max problems, Math. Oper. Res., 31 (2006), pp. 173--187.

[11] K. Kim, An Optimization Approach for Identifying and Prioritizing Critical Components in a
Power System, Tech. Report ANL/MCS-P7076-0717, Argonne National Laboratory, 2017.

[12] K. Kim, A. Botterud, and F. Qiu, Temporal decomposition for improved unit commitment
in power system production cost modeling, IEEE Trans. Power Syst., 33 (2018), pp. 5276--
5287, https://doi.org/10.1109/TPWRS.2018.2816463.

[13] K. Kim, F. Yang, V. M. Zavala, and A. A. Chien, Data centers as dispatchable loads to
harness stranded power, IEEE Trans. Sustain. Energy, 8 (2017), pp. 208--218.

[14] K. Kim and V. M. Zavala, Algorithmic innovations and software for the dual decomposition
method applied to stochastic mixed-integer programs, Math. Program. Comput., 10 (2018),
pp. 225--266, https://doi.org/10.1007/s12532-017-0128-z.

[15] K. C. Kiwiel, Convergence of approximate and incremental subgradient methods for con-
vex optimization, SIAM J. Optim., 14 (2004), pp. 807--840, https://doi.org/10.1137/
S1052623400376366.

[16] K. C. Kiwiel, A proximal bundle method with approximate subgradient linearizations, SIAM
J. Optim., 16 (2006), pp. 1007--1023, https://doi.org/10.1137/040603929.

[17] J. Linderoth and S. Wright, Decomposition algorithms for stochastic programming on a
computational grid, Comput. Optim. Appl., 24 (2003), pp. 207--250.

[18] M. Lubin, K. Martin, C. G. Petra, and B. Sand{\i}k\c c{\i}, On parallelizing dual decomposition
in stochastic integer programming, Oper. Res. Lett., 41 (2013), pp. 252--258.

[19] A. Nedic and D. P. Bertsekas, Incremental subgradient methods for nondifferentiable
optimization, SIAM J. Optim., 12 (2001), pp. 109--138, https://doi.org/10.1137/
S1052623499362111.

[20] A. Nedi\'c, D. P. Bertsekas, and V. S. Borkar, Distributed asynchronous incremental sub-
gradient methods, Stud. Comput. Math. 8, North-Holland, Amsterdam, 2001, pp. 381--407.

[21] A. Papavasiliou and S. S. Oren, Multiarea stochastic unit commitment for high wind pene-
tration in a transmission constrained network, Oper. Res., 61 (2013), pp. 578--592.

[22] O. Pearce, T. Gamblin, B. R. De Supinski, M. Schulz, and N. M. Amato, Quantifying
the effectiveness of load balance algorithms, in Proceedings of the 26th ACM International
Conference on Supercomputing, ACM, New York, 2012, pp. 185--194.

[23] K. Ryan, D. Rajan, and S. Ahmed, Scenario decomposition for 0--1 stochastic programs:
Improvements and asynchronous implementation, 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), IEEE, 2016, pp. 722--729.

[24] W. van Ackooij and A. Frangioni, Incremental bundle methods using upper models, SIAM
J. Optim., 28 (2018), pp. 379--410, https://doi.org/10.1137/16M1089897.

https://arxiv.org/abs/1509.09257
https://doi.org/10.1137/120865987
https://doi.org/10.1137/S1052623498342186
https://doi.org/10.1137/S1052623498342186
https://doi.org/10.1109/TPWRS.2018.2816463
https://doi.org/10.1007/s12532-017-0128-z
https://doi.org/10.1137/S1052623400376366
https://doi.org/10.1137/S1052623400376366
https://doi.org/10.1137/040603929
https://doi.org/10.1137/S1052623499362111
https://doi.org/10.1137/S1052623499362111
https://doi.org/10.1137/16M1089897

	Introduction
	A bundle-trust-region algorithm
	Algorithmic steps
	Convergence analysis

	An asynchronous variant
	Algorithmic steps
	Convergence analysis
	Dynamic subproblem allocation

	Numerical experiments
	Implementation
	Problem instances
	Synchronous computing and load balance
	Asynchronous computing and performance profiles
	Variations of asynchronous computing
	Scalability

	Summary and directions of future work
	References

