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Abstract—Power system operations under contingency need to
solve large-scale complex nonlinear optimization problems in a
short amount of time, if not real time. Such nonlinear programs
are computationally challenging and time-consuming and thus do
not scale with the size of the power system network. We apply
a graph convolutional network (GCN) model, as a supervised
learning model, for predicting an optimal load-shedding ratio
that prevents transmission lines from being overloaded under
line contingency (i.e., line tripping). In particular, we exploit
the power system network topology in the GCN model, where
the topology information is convoluted over the neural network.
Using IEEE test cases, we benchmark our GCN model against
a classical neural network model and a linear regression model
and show that the GCN model outperforms the others by an
order of magnitude.

Index Terms—Graph covolutional network, neural network,
machine learning, alternating current power system, contingency
analysis.

I. INTRODUCTION

Power grid operations involve a variety of decision-making
problems (e.g., unit commitment, optimal power flow,

economic dispatch) that can be formulated as optimization
problems. By using off-the-shelf optimization solvers, one can
find optimal solutions for such decision-making problems in
a reasonable amount of time. Despite the solution quality the
optimization-based approach provides, however, it may not be
appropriate for timely decision-making tasks (e.g., security-
or emergency-related tasks), because power grid operation
problems are too complex to be solved in real time.

Load shedding is important in power system operations
particularly under contingency events (e.g., line failure [1]).
When one or more transmission lines are tripped, the system
needs to correct the stability by adjusting power dispatch,
including voltage angles and magnitudes, generation, and load.
Shedding load is necessary when the system ramp capacity is
pushed to the limit. Failure to shed sufficient load from the
system can lead to some transmission lines being overloaded
and additional line failures, possibly resulting in cascading
failures. On the other hand, undesired load losses can occur
if more load is shed than necessary. Therefore, finding the
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optimal amount of load shedding that minimizes load losses
but also prevents additional line outages is an important issue
for maintaining the stability and efficiency of power systems.

One way to obtain the optimal amount of load shedding is
to solve the alternating current optimal power flow (ACOPF)
problem with respect to minimizing the total amount of load
shedding [1]. The ACOPF problem is challenging, however,
because of its nonlinearity and nonconvexity. Therefore, its
solution is hard to be obtained in a short time and does not
scale with the size of the power system. By training a machine
learning model with high-quality training data (possibly a
collection of outputs from an optimization model for a variety
of scenarios), one can build a model that returns a high-
quality solution in real time. In order to mimic the complex
mathematical operations involved in solving a complex opti-
mization problem, neural network models have been proposed
and proved effective for various power system applications
(e.g., [2], [3], [4], [5]).

In this paper, we introduce the first application of a graph
convolutional network (GCN) [6] to power grid operations.
In particular, we develop a deep learning framework that
implements a GCN model as a supervised learning model to
predict an optimal load-shedding amount in order to avoid
subsequent transmission line overloads in the power system.
The GCN model generates intermediate features utilizing the
adjacent matrix of the underlying power system network topol-
ogy, making it a better choice for capturing interactions on a
given graph, compared with a classical neural network model
that combines input features without taking the underlying
topology information into account. To apply GCN to load-
shedding operations, we develop a variant of the ACOPF
model that minimizes the load-shedding ratio given a load
profile and a contingency scenario. For a variety of demand
profiles and contingency scenarios, the optimization model is
run to generate data samples, which are then used to train our
GCN model to predict an optimal load-shedding ratio for a
given system state. To demonstrate the effectiveness of our
GCN model, we provide extensive numerical experiments on
IEEE bus systems, where we compare the performance of our
GCN model with a classical neural network model and a linear
regression model.



II. OPTIMAL LOAD-SHEDDING MODEL

In this section, we describe the optimal load-shedding model
that we use to obtain the optimal shedding ratio for each
demand profile and contingency scenario. We start with the
notation used throughout this paper.

A. Notation

A power grid consists of a set of buses N and a set of lines
L that connect buses. Among the buses is a set of generators G
that generate power. Also included is a set of reference buses
Nref ⊂ N that provide an angular reference to other buses. For
each entity, we define related physical quantities as follows.

1) Bus: For each bus i ∈ N,
• Vm[i]/Va[i]: voltage magnitude/angle (p.u./degrees)
• Pd[i]/Qd[i]: real/reactive power demand (MW/MVAr)
• Gs[i]/Bs[i]: shunt conductance/susceptance (MW/MVAr

demanded/injected at V = 1.0 p.u.)
• V min

m [i]/V max
m [i]: min/max voltage magnitude (p.u.)

2) Line: For each line l ∈ L,
• r[l], x[l]: resistance/reactance (p.u.)
• b[l]: total line charging susceptance (p.u.)
• τ [l]: transformer off nominal turns ratio
• θ[l]: transformer phase shift angle (degrees)
• f̄ [l]: apparent power limit on line l
3) Generator: For each generator k ∈ G ⊂ N,
• Pg[k]/Qg[k]: real/reactive power output (MW/MVAr)
• Pmin

g [k]/Pmax
g [k]: min/max active power output (MW)

• Qmin
g [k]/Qmax

g [k]: min/max reactive power output (MVAr)
• a[k]: participation factor of generator k in real power

contingency response (1)
4) Reference Bus: For each reference bus iref ∈ Nref,
• V ref

a [iref]: voltage reference angle (degrees)

B. Formulation

In this model, we assume that line contingency occurs after
the power dispatch is set to meet a load profile D = (Pd, Qd).
Let X = (Pg, Qg, Vm, Va) be a dispatch solution, and let L′ ⊂
L be a set of active lines representing a contingency scenario.
To find the optimal load-shedding ratio that minimizes load
losses and maintains the stability of system (i.e., feasibility),
we consider the following optimization model.

1) Decision Variables: The decision variables are
• 0 ≤ ρ ≤ 1: load-shedding ratio
• P ′g, Q

′
g, V

′
m, V

′
a: power dispatch after line contingency

• −1 ≤ P∆
g ≤ 1: generator participation factor for real

power contingency response (p.u.)
• 0 ≤ fs[l′]: slack for power overflow on each line l′ ∈ L′.
2) Objective Function: The objective function to be mini-

mized is

ρ+ λ
∑
l′∈L′

fs[l
′].

It comprises the load-shedding ratio ρ and the sum of the
power overflow fs[l

′] on each line l′ ∈ L′, where their relative
weights are governed by the penalty parameter λ.

3) Generation Constraints: For each generator k ∈ G, we
have real/reactive power generation limits:

Pmin
g [k] ≤ P ′g[k] ≤ Pmax

g [k],

Qmin
g [k] ≤ Q′g[k] ≤ Qmax

g [k].

In addition to these constraints, real power generation has the
following extra constraint for each generator k ∈ G:

P ′g[k] = Pg[k] + a[k]P∆
g ,

which enforces that the change of real power output P ′g[k]−
Pg[k] before and after line contingency should be proportional
to prescribed participation factors a[k].

4) Voltage Constraints: Each bus i ∈ N has a box constraint
on the voltage magnitude V ′m[i]:

V min
m [i] ≤ V ′m[i] ≤ V max

m [i].

Voltage angles are fixed for each reference bus iref ∈ Nref:

V ′a[iref] = V ref
a [iref].

5) Line Flow Constraints: Each line l′ = (f, t) ∈ L′ has a
soft limit on power flow S[f, t] and S[t, f ]:

max(|S[f, t]|, |S[t, f ]|) ≤ f̄ [l′] + fs[l
′].

As expressed above, power overflow is allowed but penalized
in the objective function by the amount it exceeds the limit.

6) AC Power Flow Equations: Let Gi be the set of gener-
ators located at bus i, and let Y = G+ jB be the admittance
matrix of the power system after line contingency, where G
and B are real matrices and j =

√
−1. For each bus i ∈ N ,

we have∑
ki∈Gi

Pg[ki]− (1− ρ)Pd[i]

=

n∑
k=1

Vm[i]Vm[k]
(
Gikcos

(
Va[ik]

)
+Biksin

(
Va[ik]

))
and ∑

ki∈Gi

Qg[ki]− (1− ρ)Qd[i]

=

n∑
k=1

Vm[i]Vm[k]
(
Giksin

(
Va[ik]

)
−Bikcos

(
Va[ik]

))
,

where Va[ik] = Va[i]− Va[k].

III. GRAPH CONVOLUTIONAL NETWORK MODEL

The optimal load-shedding model in Section II takes X ,
L′, and f̄ as inputs and returns ρ as output. In this section,
we describe how the data samples of form (X,L′, f̄ , ρ) are
preprocessed and fed into a GCN model. We also present its
network architecture, as well as that of a multilayer perceptron
network as a benchmark.



A. Data Preprocessing

After obtaining data samples, we preprocess them in order
to make them have the right form to be trained by GCN.
Specifically, we compute net real and reactive power for each
bus i ∈ N as follows:

Pnet[i] =

{
Pd[i]− Pg[i], i ∈ G
Pd[i], otherwise

,

Qnet[i] =

{
Qd[i]−Qg[i], i ∈ G
Qd[i], otherwise

.

Noting that the voltage magnitude Vm and voltage angle Va are
defined for each bus, we define a feature matrix X̂ ∈ R|N|×4:

X̂ = (Vm, Va, Pnet, Qnet).

On the other hand, we construct an adjacency matrix A using
the line power flow limit f̄ and line contingency L′ as follows:

Aij =

{
f̄ [l′], l′ = (i, j) or (j, i) ∈ L′

0, otherwise
.

After obtaining A, we apply the renormalization trick [6]
on the adjacency matrix. The renormalization of adjacency
matrix Â is achieved by Â = D̃−

1
2 ÃD̃−

1
2 , where Dii =

maxj(Aij), Ã = A+D, D̃ii = ΣjÃij .

B. Network Architecture

Using (X̂, Â) as input, we develop a GCN model that
predicts ρ. Our model consists of two GCN layers followed
by a fully connected network with a single hidden layer, as
depicted in Figure 1. This network architecture is different
from that of multilayer perceptron (MLP) in Figure 2 in that
its input data (X̂, Â) has a graph form and the underlying
topology is used to generate intermediate features, whereas
MLP uses just the vectorization of X̂ and Â as input and
does not utilize the topology information.

Input

ReLU ReLUReLU

Layer 1
(graph convolution)

Layer 2
(graph convolution)

Layer 3
(fully connected)

( ෠𝑋, መ𝐴)

Output

ො𝜌

Fig. 1. Network Architecture (GCN)

As shown in Figure 1, our model takes (X̂, Â) and outputs
Y1 ∈ R|N|×K in the first layer. To generate Y1, we first obtain
a mixed feature matrix ÂX̂ that linearly combines a feature
vector of each bus with those of neighboring buses using the

Input

ReLU ReLUReLU

OutputLayer 1
(fully Connected)

Layer 2
(fully Connected)

Layer 3
(fully Connected)

v𝑒𝑐 መ𝐴

v𝑒𝑐 ෠𝑋

ො𝜌

Fig. 2. Network Architecture (MLP)

weights provided by Â. Then, we extract a new set of features
ÂX̂W1 + b1 by multiplying a weight matrix W1 ∈ R4×K

and adding a bias vector b1 ∈ RK . After applying the ReLU
activation function f(x) = max(0, x), we obtain the first
hidden unit Y1:

Y1 = ReLU(ÂX̂W1 + b1).

In the same way, we generate Y2 ∈ R|N|×L in the second
graph convolutional layer:

Y2 = ReLU(ÂY2W2 + b2),

where W2 ∈ RK×L and b2 ∈ RL.
After having two GCN layers, we connect a fully connected

neural network with a single hidden layer. Before entering the
fully connected network, we vectorize the second hidden unit
Y2 to Ŷ2 ∈ R1×|N|L and use Ŷ2 as input to the following
layer. In the third layer, we generate Y3 ∈ R1×M using a
weight matrix W3 ∈ R|N|L×M , a bias vector b3 ∈ RM , and
the ReLU activation:

Ŷ3 = ReLU(Ŷ2W3 + b3).

By multiplying a weight vector W4 ∈ RM×1 and adding a
bias b4 ∈ R, we have a network output Ŷ4 ∈ R:

Ŷ4 = Ŷ3W4 + b4,

which predicts an optimal load-shedding ratio ρ.

IV. NUMERICAL EXPERIMENTS

We present the experimental results from benchmarking the
GCN model with the MLP model and a linear regression (LR)
model on the IEEE test systems with 9, 30, 57, and 118 buses.

A. Experiment Settings

The optimal load-shedding model is implemented in Julia
based on the power grid examples in StructJump [7] and solved
by IPOPT [8]. The GCN model is built in Python by using
TensorFlow [9].
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Fig. 3. Data Generation Procedure

B. Scenario Generation
We describe how to generate scenarios each of which

represents (X,L′, f̄ , ρ). The scenario generation steps are
summarized as follows (also shown in Figure 3).

1. Using the default load profile D̄ = (P̄d, Q̄d) in the IEEE
test data, generate active and reactive power demand
D[i] = (Pd[i], Qd[i]) for each node i ∈ N as

Pd[i] = max(P̃d[i], 0), Qd[i] = Q̃d[i],

where

P̃d[i] ∼ N (P̄d[i], 0.01× |P̄d[i]|2),

Q̃d[i] ∼ N (Q̄d[i], 0.01× |Q̄d[i]|2).

2. Solve the ACOPF problem with the load profile D, and
obtain a power dispatch solution X = (Vm, Va, Pg, Qg).

3. Compute the power flow f [l] for each line l = (f, t) ∈ L
as

f [l] =

√
|S[f, t]|2 + |S[t, f ]|2

2
,

where S[f, t] represents apparent power on line l from
bus f to t and vice versa.

4. Set the line limit f̄ [l] for each line l ∈ L by

f̄ [l] = (1 + α[l])f [l],

where α[l] is randomly chosen between 0 and 1.
5. Trigger a line outage for one line at a time, and define a

set of active lines L′ ⊂ L reflecting the line contingency.
This generates |L| contingency scenarios for the load
profile D.

6. For each line contingency L′, solve the optimal load-
shedding model with the load profile D, power dispatch
X , and line flow limit f̄ .

Following this procedure, we obtain |L| data samples at a time.
To acquire a variety of data samples, we generate 100 demand
scenarios for each IEEE bus system and repeat the process for
each demand scenario.

The data generation results are summarized in Table I. We
split the data samples into 70% and 30% for training and
testing the model, respectively. Note that the number of data
samples is smaller than 100 × |L| since the optimal load-
shedding problem can be infeasible for some demand and
contingency scenarios.

TABLE I
DATA GENERATION RESULTS

System No. of lines No. of Data Samples
Total Training Test

9-bus 9 600 420 180
30-bus 41 3900 2730 1170
57-bus 80 6889 4822 2067

118-bus 186 17683 12378 5305

Fig. 4. Distribution of Optimal Shedding Ratio ρ

C. Data Distributions

Figure 4 displays the distributions of the optimal load-
shedding ratio ρ of training and testing sets for each IEEE
bus system where the mixed color represents the over-lapping
area between two distributions. As seen in the figure, there is
little difference between the distributions of training sets and
testing sets. We note that many data samples have a near-zero
value of ρ, which means that no load shedding is required for
such cases. The relative portion of such data samples appears
to be large for large bus systems, indicating that the large bus
systems (30-bus, 57-bus, 118-bus) are more robust to a single
line failure.

Regarding the distribution of the load-shedding ratio ρ
excluding the near-zero values, each system has a different
shape. The 9-bus system has a negatively skewed distribution
whereas the 118-bus system has a bell-shaped one. The 30-
bus and 57-bus systems have similar distributions, namely, a
uniform distribution with a spike, but the magnitude of the
spike is bigger for the 30-bus system.

D. Prediction Results

Table II and Figures 5 and 6 show the prediction results of
three prediction models—GCN, MLP, and LR—on the IEEE
test systems. Table II displays the root mean squared errors
(RMSE) of each model for each bus system. As shown in
the table, GCN outperforms MLP and LR in both training
RMSE and testing RMSE for all cases. It is interesting to note
that GCN not only works well on the training sets but also
generalizes well to the test sets. This can be attributed to the
incorporation of network topology since it guides the model to



TABLE II
PREDICTION RESULTS (RMSE)

System Model RMSE (Training) RMSE (Testing)

9-bus
GCN 0.0282 0.0685
MLP 0.0940 0.1209
LR 0.0929 0.0980

30-bus
GCN 0.1330 0.1457
MLP 0.1375 0.1582
LR 0.1446 0.1734

57-bus
GCN 0.0744 0.1231
MLP 0.1158 0.6394
LR 0.1507 0.5251

118-bus
GCN 0.0086 0.0291
MLP 0.1034 6.5755
LR 0.2422 3.1741
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Fig. 5. Test loss of each model over the training epoch for each test instance

develop useful features to be fed to the fully connected layer.
The exceptional generalization performance of GCN is well-
captured in the large systems such as the 57-bus and 118-bus
systems, reported in Table II. The testing RMSEs of GCN are
lower by a factor of 5 and 327 than that of MLP for the 57-
and 118-bus systems, respectively.

On the other hand, Figure 5 shows that the test loss of
GCN rapidly decreases and stays at the near zero value. To
the contrary, LR and MLP take longer to converge and they are
stuck at the spurious local minimum as the number of buses
increases. Figure 6 shows the distribution of test prediction
errors, where the variance of the prediction errors resulting
form GCN appears smaller than that of MLP and LR while
centering at zero. Similar to the observations in Table II, the
prediction errors are in much smaller boxes in larger systems
(i.e., 57- and 118-bus systems), as compared with the boxes for
the other smaller systems. These results clearly demonstrate
the superior performance of GCN for predicting the load-
shedding ratio ρ across the systems.

V. SUMMARY AND DIRECTIONS OF FUTURE WORK

In this work, we introduced an application of a graph
convolutional network (GCN) to load-shedding operations. We
presented a data generation procedure for high-quality data
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Fig. 6. Box Plots of Test Prediction Error

samples, which involves solving the optimal load-shedding
problem. We described the model development process for
data preprocessing, and we presented the network architecture.
Experimental results on the IEEE test systems show that this
model outperforms the other two benchmark models MLP
and LR in predicting an optimal shedding ratio for a variety
of scenarios. These results demonstrate that GCN, which
takes system topology into account, can be a good choice
for modeling power grid operations. This work provides a
number of potential directions for future research that involve
applying GCN and its variants for power system operations
and analysis.
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